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ABSTRACT
Multimedia-based recommendation provides personalized item sug-
gestions by learning the content preferences of users. With the
proliferation of digital devices and APPs, a huge number of new
items are created rapidly over time. How to quickly provide rec-
ommendations for new items at the inference time is challenging.
What’s worse, real-world items exhibit varying degrees of modality
missing (e.g., many short videos are uploaded without text descrip-
tions). Thoughmany efforts have been devoted tomultimedia-based
recommendations, they either could not deal with new multime-
dia items or assumed the modality completeness in the modeling
process.

In this paper, we highlight the necessity of tackling the modal-
ity missing issue for new item recommendation. We argue that
users’ inherent content preference is stable and better kept in-
variant to arbitrary modality missing environments. Therefore,
we approach this problem from a novel perspective of invariant
learning. However, how to construct environments from finite user
behavior training data to generalize any modality missing is chal-
lenging. To tackle this issue, we propose a novel Multimodality
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Invariant Learning reCommendation (a.k.a. MILK ) framework.
Specifically, MILK first designs a cross-modality alignment mod-
ule to keep semantic consistency from pretrained multimedia item
features. After that, MILK designs multi-modal heterogeneous en-
vironments with cyclic mixup to augment training data, in or-
der to mimic any modality missing for invariant user preference
learning. Extensive experiments on three real datasets verify the
superiority of our proposed framework. The code is available at
https://github.com/HaoyueBai98/MILK.
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1 INTRODUCTION
With the proliferation of digital devices and APPs, individuals are
exposed to abundant multimedia content, such as e-commerce and
short-video sharing applications. Multimedia-based recommender
systems have become indispensable components of these online ser-
vices, aiming at learning user preferences from multimedia content
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to facilitate personalized item suggestions [2, 4, 11]. The key idea
of these models lies in better model item content representations
from pretrained features, and then align users’ content preference
with the help of users’ historical records.

In real-world scenarios, multimedia-based recommender systems
encounter distinctive characteristics. First, a huge number of new
items emerge rapidly over time, particularly on the news and short-
video sharing platforms. E.g., about 500 hours of video are uploaded
to YouTube every minute1 [18]. Unlike the old items encountered
during training, new items lack users’ behavior data and need to be
quickly recommended to keep freshness. Most of previous works
focused on designing sophisticated content representations from
the complete multimedia content [10, 17, 24, 26]. Others proposed
to leverage interchange between users and items with a fused graph
from multiple content channels [33, 34, 40, 41]. E.g., researchers
proposed to exploit the user-item interaction records to guide the
representation learning of each modality for final recommenda-
tion fusion [34]. Most of these graph-based models show better
performance for old items compared to pure content representa-
tion techniques. When faced with new items, most models need
to be retrained on new items, which could not satisfy the quick
adaption to new items at the inference stage. Second, real-world
items exhibit varying degrees of modality missingness. For example,
in short video-sharing platforms, authors may omit introductions
for freshly uploaded videos, leading to a dearth of textual modal-
ity. Some new videos may intentionally lack audio features due
to stylistic choices [7]. Nearly all previous works relied on modal-
ity completeness for recommendation or simply tackled this issue
with preprocessing techniques to impute missing modalities. There-
fore, the recommendation performance is hindered by the inferior
preprocessing quality. In summary, how to tackle the new item
and the modality missing issues in multimedia recommendation is
important and has not been well studied before.

In this paper, we study the problem of multimedia-based new
item recommendation.We provide an intuitive experiment to demon-
strate the challenges of this problem. As shown in Figure 1, we
assess the performance of a classical multimedia-based recommen-
dation model DUIF [10] under different settings in Amazon Baby
dataset [12, 20]. All samples in the original dataset have two modal-
ities. The experimental settings are as follows: (1) Original dataset
with no modality missing. (2) For the training and testing sets, sam-
ples randomly lose one modality. (3) Only samples in the testing
set randomly lose one modality. Features for missing modalities
are filled with the mean value. We can clearly observe a decline
in model performance in Setting 2 and 3, indicating that modality
missingness has a substantial detrimental effect on the new item
recommendation. It should be noticed that the performance in Set-
ting 3 is much worse than Setting 2, showing that when there is a
discrepancy in modality missingness between the training and test-
ing sets, the model’s performance experiences a more significant
decline. It also demonstrates that simple data preprocessing and
removing training samples with modality missing are ineffective,
and may even exacerbate the situation.

Essentially, the difficulty is that there are multiple combinations
with modality missing. When faced with new items of incomplete

1https://www.statista.com/
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Figure 1: New Item Recommendation with Missing Modalities

patterns, the inference stage distribution changes compared to
the training stage. In fact, users’ inherent content preference is
stable and better kept invariant with arbitraty modality missing.
Therefore, an idea recommendation model is encouraged to predict
each user’s preference as invariant as possible.

To achieve this goal, we draw inspiration from invariant learn-
ing [1, 19, 39], which can achieve guaranteed performance under
distribution shifts and received great attention in recent years. In-
variant learning models correlations invariant across different train-
ing environments, where environments are variables that should
not affect the prediction. Analogously, we want to learn users’ in-
herent content preference that is invariant to any modality missing.
However, implementing this analogy is challenging. As users’ in-
teraction records are limited, how to construct environments to
generalize any modality missing is a challenge.

In this work, we propose a novelMultimodality InvariantLearning
reCommendation (a.k.a. MILK) framework for multimedia-based
new item recommendation. The main idea of MILK is to encourage
the users’ inherent content preference stable and kept invariant
to arbitrary modality missing scenarios for any new item recom-
mendation. The MILK consists of two modules, the cross-modality
alignment module for better item representation learning and the
cross-environment invariance module for invariant preference pre-
diction. Specifically, in the cross-modality alignment module, we
devise alignment functions that allow one modality to capture con-
tent signals from other modalities. This module ensures that the
absence of a specific modality does not hinder the extraction of
features from other modalities. In the cross-environment invariance
module, we design cyclic mixup to create multi-modal heteroge-
neous environments and employ invariant learning to enhance
the model’s generalization capability. In cyclic mixup, we use the
Dirichlet distribution to create diverse environments, allowing for
imbalanced modality proportions and comprehensive consideration
of each modality.

Our contributions are summarized as:

• We emphasize the significance of addressing the modality
missing issue in multimedia-based new item recommenda-
tions.We argue that users’ underlying preference is invariant
to arbitrary modality missing environments, and tackle this
problem from an invariant learning perspective.
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• We propose MILK for the challenging problem. We design a
novel cyclic mixup method, which constructs heterogeneous
environments with different modal information proportions,
thereby adapting invariant learning with continuous val-
ues and augmenting limited training data for invariant user
preference modeling.

• Extensive experiments on three real-world datasets demon-
strate the superiority and effectiveness ofMILK inmultimedia-
based new item recommendation.

2 RELATEDWORK
2.1 Multimedia-Based Recommendation
The recommendation task aims to provide personalized recom-
mendations to users[35–37]. Multimedia-based recommendations
utilize multimodal contents (e.g., text, image, audio) of items to
assist with the recommendation task. The information-rich mul-
timodal content greatly improves item characteristics and user
preference modeling. Early works incorporate the item visual fea-
tures as side information into the models [4, 11, 13]. For example,
VBPR [11] adds a visual representation of items based on matrix
factorization. Subsequently, some researchers utilize graph neural
networks to perform embedding propagation on interaction graphs
with different modality data, thereby capturing user preferences on
different modalities [16, 18, 33, 34, 42]. For instance, MMGCN [34]
conducts graph convolutional operations on a modal-specific graph
and captures the modal-specific user preference. Although these
works play important roles in exploring the use of multimodal in-
formation, most of them are transductive and rely heavily on CF
information. Thus, they cannot flexibly deal with the constantly
emerging new items.

To address this challenge, some works manage to enable mod-
els to make new item recommendations. These methods do not
rely on CF information and have the ability to make recommen-
dations for new items directly using multimedia features. Hybrid
recommendation methods combine CF signals and multimedia in-
formation in the training stage to obtain hybrid preference repre-
sentations [2, 3, 29, 43, 44]. For example, GoRec [2] directly models
the distribution of pre-trained preference representations to gener-
ate representations for new items guided by multimedia features.
Content-based recommendation methods focus solely on item mod-
eling based on multimedia features [10, 17, 24, 40, 41]. For example,
DUIF [10] generates item representations using multimedia features
and directly models user preferences for these features, enabling
recommendations for new items based solely on their multimedia
information. MICRO [41] constructs and fuses multiple item-item
relation graphs to explicitly mine the semantic information between
items. However, these methods often assume that the data is con-
sistently complete and of high quality, a condition rarely met in the
real world. In this paper, we address new item recommendations
in scenarios where modalities are missing and introduce a more
practical model to tackle this challenge.

2.2 Invariant Learning for Recommendation
Invariant learning (IL) [1, 5, 21] improves the robustness of mod-
els to distribution shifts. IL is based on the assumption that the
causal mechanism keeps invariant across various environments. By

penalizing the variance of model prediction across environments,
models are then encouraged to capture the causal mechanism in-
stead of spurious correlations. The common process of IL is to
first split the training data into groups (i.e., environments), here
the groups need to reflect spurious correlations. Then, by ensur-
ing consistent performances across different environments, the
purpose of learning invariant representations is achieved. The envi-
ronment assignments play an important role in IL. Early works [1]
assume the environment labels are given in the dataset. Recently,
IL has been introduced to the scenario where environment labels
are unknown [6, 25]. These methods utilize prior knowledge of
spurious correlations to split the training data. For example, Teney
et al. [25] cluster training samples with their predefined spurious
features. EIIL [6] splits training data into the majority/minority sets
on which the spurious feature conditioned label distribution varies
maximally. IL has been introduced into recommender systems for
buildingmore trustworthymodels nowadays. InvPref [30] estimates
heterogeneous environments corresponding to different types of
latent bias and uses IL to handle different unknown data biases in
a unified framework. InvRL [9] utilizes environments to reflect the
spurious correlations and then learns invariant representations to
make a consistent prediction of user-item interaction across various
environments. In our work, we are inspired by IL, making the users’
inherent content preference stable and kept invariant to arbitrary
modality missing. We present a novel cyclic mixup heterogeneous
environments construction method. Cyclic mixup mimics infinite
real-world scenarios with finite training samples.

3 PROBLEM FORMULATION
3.1 New Item Recommendation
Let U and V denote the sets of users and items. Since implicit
feedback is very common, we use R ∈ R |U |× |V | to denote the user-
item interaction matrix, 𝑟𝑖 𝑗 = 1 if user 𝑖 has interacted with item 𝑗 ,
otherwise 𝑟𝑖 𝑗 = 0. Beyond the interaction signal, the multimodal
features of items are extracted from their content, such as the
visual, textual, acoustic modalities, and so on. We can generate
the multimodality features into representations via generic feature
extractors. For an item 𝑗 ∈ V , we denote its feature vector as
x𝑗 ∈ R𝑀×𝑑𝑥 , where 𝑀 is the number of modalities and 𝑑𝑥 is the
dimension of the vector. Taking the user ID 𝑖 and multimodality
representation x𝑗 of item 𝑗 as input, the recommendation model
FΦ aims to infer the probability of user 𝑖 will interact with item
𝑗 . Optimizing FΦ is to minimize the loss function L (e.g., the BPR
loss [23]) given the observed interactions:

Φ∗ = argmin
Φ
E(𝑖,x𝑗 )∼P𝑡𝑟𝑎𝑖𝑛L(FΦ (𝑖, x𝑗 );R) . (1)

The expectation is calculated in the training data distribution P𝑡𝑟𝑎𝑖𝑛 .
In the inference stage, we aim for the new item recommendation
model FΦ∗ can perform well on the new items set Vnew without
any historical interactions.

3.2 Modality Missing Issue
The new item recommendation models effectively infer the prob-
ability 𝑦𝑖 𝑗 of user 𝑖 will interact with new item 𝑗𝑛𝑒𝑤 under the
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modality completeness assumption. Real-world scenarios often de-
viate from this idealized setting. Many samples exhibit varying
degrees of modality missingness. We expect the recommendation
model to remain effective in this scenario.

We denote themodality representation of items’ asX ∈ R |𝑉 |×𝑀×𝑑𝑥 .
We use A ∈ R |𝑉 |×𝑀 to denote the item modality indication matrix,
where a𝑗𝑚 = 1 if the 𝑚th modalities of item 𝑗 is available, and
otherwise a𝑗𝑚 = 0. During the training stage, input data (𝑖, x𝑗 ) can
be considered to be drawn from a joint distribution :

(𝑖, x𝑗 ) ∼ P𝑡𝑟𝑎𝑖𝑛 (𝑖, I(X𝑗 ,A𝑗 )) . (2)

I(X𝑗 ,A𝑗 ) represents somemodality inX𝑗 is missing indicated byA𝑗 .
In the inference stage, the unavailability of certain modalities in a
new item leads to data being drawn from another joint distribution:

(𝑖, x𝑗new ) ∼ P𝑡𝑒𝑠𝑡 (𝑖, I(Xnew,A𝑗new )) . (3)

The multimodal data in the training set is typically complete, while
the missingness of multimodal data in the testing phase is unknown,
namely A ≠ Anew. The distribution shift between P𝑡𝑒𝑠𝑡 and P𝑡𝑟𝑎𝑖𝑛
challenges the performance of new item recommendation models
built on the empirical risk minimization (ERM) in the training set.

Our goal is to develop an optimal new item recommendation
model capable of generalizing well to multimedia features drawn
from the test distribution P𝑡𝑒𝑠𝑡 , where P𝑡𝑒𝑠𝑡 ≠ P𝑡𝑟𝑎𝑖𝑛 . The optimiza-
tion objective is to minimize the loss L(F (𝑖, x𝑗 );R) with respect
to the model’s parameters Φ, where the expectation is taken over
the test data distribution P𝑡𝑒𝑠𝑡 . Note that P𝑡𝑒𝑠𝑡 is unknown during
the training stage.

argmin
Φ
E(𝑖,x𝑗 )∼P𝑡𝑒𝑠𝑡L(FΦ (𝑖, x𝑗 );R) . (4)

4 THE PROPOSED MILK FRAMEWORK
4.1 Overview ofMILK
As illustrated in Figure 2, we present the overall framework of our
proposed MILK . Essentially, MILK aims to encourage stable user
preference prediction for new items, which is guaranteed by in-
variant preference learning under missing modality scenarios. To
achieve this goal, MILK consists of two elaborated modules: Cross-
Modality Alignment Module (CMAM) and Cross-Environment In-
variance Module (CEIM).

Specifically, CMAM aims to learn an informative multimodal
representation under potential modality missing scenarios. We im-
plement CMAM by narrowing each modality representation, thus
each modality representation can supplemented from other modal-
ity features, to tackle the insufficient multimodal representation
issue under missing modality. After multimodal representation
alignment, we execute CEIM as follows: heterogeneous environ-
ment construction and invariant user preference learning in various
environments. Particularly, we devise a flexible and unique envi-
ronment construction based on a cyclic modality mixup strategy,
enabling adaptation to varying proportions of missing modalities
in test data. Given the constructed environments, we conduct stable
user preference learning based invariant risk minimization (IRM)
principle. Next, we introduce each module in detail.

4.2 Cross-Modality Alignment Module
Modal-Specific Extractors. Most existing works [32, 44] con-
catenate multi-modal features and then convert them into item
representation through an only extractor. This means that the ab-
sence of any modality has an impact on the whole extractor, which
in turn adversely affects the extraction of other modal information.

CMAM uses independent extractors to guarantee stable modality
feature extraction, whichmeans each extractor is exclusively related
to a specific modality. Such an approach ensures the accuracy of the
underlying understanding of existing modal features. The process
is as follows:

c𝑚𝑗 = G𝑚 (x𝑚𝑗 ) = W𝑚x𝑚𝑗 + b𝑚, (5)

where x𝑚
𝑗
denote the𝑚𝑡ℎ modalitys’ original feature of item 𝑗 , G𝑚

denote the representation generator of𝑚𝑡ℎ modality and W𝑚 and
b𝑚 are used to parameterize this process.
Cross-Modality Alignment. While the modal-specific extractors
ensure the stable extraction of modal information, they also in-
crease the risk that different modal information is mapped into
different representation spaces. We use alignment across modalities
to guarantee the semantic consistency between representations of
different modalities. At the same time, the alignment across modal-
ities makes the information between the modalities be transferred
to each other. When a certain modality is unavailable, other modal-
ities can provide a supplement. In MILK, we achieve this goal by
optimizing the following alignment objective:

L𝑎𝑙𝑖𝑔𝑛 =

|V |∑︁
𝑗=1

𝑀−1∑︁
𝑚=1

𝑀∑︁
𝑚′=𝑚+1

a𝑗𝑚a𝑗𝑚′ ∥c𝑚𝑗 − c𝑚
′

𝑗 ∥2 . (6)

4.3 Cross-Environment Invariant Module
Embedding and Fusion. CEIM obtains user representation and
item representation by embedding layer P and fusion function Q.
For users, CEIM directly uses an embedding layer to convert the ID
of user 𝑖 into a user representation u𝑖 . Such an embedding layer can
directly capture the user’s interest from their interaction records.
For items, CMAM already generates𝑀 representations c𝑚

𝑗
for each

item. Then CEIM fuse these representations by the function Q to
obtain the representation of item 𝑗 :

z𝑗 = Q(c1𝑗 , . . . , c
𝑀
𝑗 ), (7)

In order to display and control the proportion of modal information
more intuitively, we use weighted summation as the fusion function.
We first determine the weights Θ = {𝜃1, . . . , 𝜃𝑀 } and fuse the
multimedia representations as follows:

z𝑗 = 𝜃1 × c1𝑗 + . . . + 𝜃𝑀 × c𝑀𝑗 . (8)

Heterogeneous EnvironmentConstruction.To enable themodel
the ability to consistently perform well in complex modal missing
scenarios, we assume the existence of multiple heterogeneous en-
vironments, each with multimedia features drawn from a differ-
ent distribution. In our context, the environments should simulate
the different modality missingness situations, i.e., let (𝑖, x𝑗 )𝑒 ∼
P𝑡𝑟𝑎𝑖𝑛𝑒 (𝑖, I(X𝑗 ,A𝑗𝑒 )) indicates the training data belongs to envi-
ronment 𝑒 , ∀𝑒 ≠ 𝑒′, P𝑡𝑟𝑎𝑖𝑛𝑒 ≠ P𝑡𝑟𝑎𝑖𝑛𝑒′ . We encourage the model to
maintain good performance and eventually learn users’ inherent
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Figure 2: Model overview. MILK is consisted of Cross-Modality Alignment Module (CMAM) and Cross-Environment Invariant Module (CEIM).
CMAM obtains the modality representations c𝑚 through independent feature extractors G𝑚 and then imposes alignment between any two
modalities. CEIM converts user ID into user representation by embedding function P and generates item representations through fusion
functions Q. CEIM generates multiple sets of weights as heterogeneous environments through cyclic mixup and aggregates multi-modal
representations into item representations z𝑒

𝑗
in each environment 𝑒 . Finally, CEIM optimizes the model under the invariant learning paradigm.

content preferences across heterogeneous environments. We natu-
rally simulate and control the heterogeneity of the environment by
adjusting the weights Θ.

Fusing different modality representations using equal weights
is the basic strategy. In the testing phase, this fusion strategy will
be used since no clear judgment can be made about the quality
of information of a certain modality. We take equal weights Θ0 =
{𝜃10 , . . . , 𝜃

𝑀
0 } = { 1

𝑀
}𝑀 into account as an environment during the

training phase to ensure that this strategy is always exposed to the
model, which ensures the basic performance of the model [22].

Then, we construct heterogeneous environments by adjusting
the weight. We expect these environments to have some important
properties: (1) Unbalance Proportion: On the one hand, all modalities
should be included in each environment, otherwise, the model will
be encouraged to ignore modality, resulting in an overall decrease
in performance. On the other hand, the proportion of modalities
should be unbalanced to simulate the complex real situation. (2)
Full Modality Consideration: Different environments should be dom-
inated by different modalities, and each modality should play a
major role in some environments. This guarantees that the model
does not establish too strong associations with specific modalities
and that the information of each modality is fully learned. (3) Diver-
sity for Generalization: Enough environments should be simulated
to improve the model’s ability. The model should be exposed to
a large number of heterogeneous environments. If the number of
environments is small, it may lead to spurious associations between
the model and the limited pattern.

Inspired by mixup [27, 38], a data augmentation method that
mixes original samples to generate new samples, we propose a
novel cyclic mixup method to construct environments satisfying
the above properties. Specifically, we first determine a Dirichlet
distribution and then sample a set of weights Θ1 = {𝜃11 , . . . , 𝜃

𝑀
1 }

from this distribution:

Θ1 ∼ Dirichlet (𝛼1, . . . , 𝛼𝑀 ), (9)

where 𝛼1, . . . , 𝛼𝑀 is used to adjust the Dirichlet distribution. Since
the Dirichlet distribution represents a probabilistic simplex in M-
dimensional space, there is no need for additional normalization of
the weights and we can extend this method to more scenarios with
any number of modalities.

We then generate the other weights by cyclic shift:

Θ𝑚 = circle_shift (Θ𝑚−1), (10)

whereΘ𝑚 denotes the resulting weight after𝑚−1 cyclic shift. Each
time through the shift, we move all the weights in Θ𝑚−1 back one
bit and place the last weight at the front. The weight changes for
performing one cyclic shift are as follows:

{𝜃1, 𝜃2, . . . , 𝜃𝑚, . . . , 𝜃𝑀 } −→ {𝜃𝑀 , 𝜃1, . . . , 𝜃𝑚−1, . . . , 𝜃𝑀−1}. (11)

We can construct 𝑀 environments based on Θ1 by 𝑀-1 cyclic
shift. The weights sampled from the Dirichlet distribution guar-
antee the Unbalance Proportion that the weights are nonzero and
unequal for different modes. Cyclic shift guarantees the property of
Full Modality Consideration, where the dominant mode is different
in each environment, and each mode will dominate an environment.
We perform this process at each iteration, which ensures the Diver-
sity for Generalization of the environment through randomness.

We denote environments by 𝑒 , where 𝑒 = 0 is the environment
with equal weights, and 𝑒 = 1, . . . , 𝑀 denotes the𝑀 environments
obtained by cyclic mixup. This fusion function uses each environ-
ment 𝑒’s weight to generate the item representation z𝑒

𝑗
:

z𝑒𝑗 = Q(c1𝑗 , . . . , c
𝑀
𝑗 ) = 𝜃1𝑒 × c1𝑗 + . . . + 𝜃𝑀𝑒 × c𝑀𝑗 . (12)

Invariant optimization.With the synergy of multiple modules,
the model can predict the user’s liking for the item based on the

T
Highlight



SIGIR ’24, July 14–18, 2024, Washington, DC, USA Bai, et al.

user ID and item multimedia features in each environment:

𝑦𝑒𝑖 𝑗 = FΦ (u𝑖 , z𝑒𝑗 ), (13)

herein, FΦ estimates the probability that a user likes an item by the
inner product operation.

We argue that users’ inherent content preference is stable and
better kept invariant to arbitrary modality information distribu-
tion. Hence, we encourage the model to maintain performance in
heterogeneous environments. To do this, we train the model using
the invariant learning paradigm to learn an invariant preference
prediction mechanism. We use one of the common optimization
objectives under the invariant learning paradigm as follows [15]:

L𝑖𝑛𝑣 = E𝑒∈EL𝑒 + 𝛽Var𝑒∈E (L𝑒 ), (14)

where the first term is the task-dependent loss used to guarantee
the performance of the model on the target task. The second term
is the constraint over the loss variance across environments, which
encourages the model to be stable across different environments.
In the context of our work, the environment 𝑒 is represented by
different weights Θ𝑚 , and L𝑒 is the average recommendation loss
value inside the environment 𝑒 , and the widely used BPR loss is
adopted in this paper:

L𝑒 =
∑︁

(𝑖, 𝑗, 𝑗 ′ ) ∈U∪V
− ln𝜎

(
𝑦𝑒𝑖 𝑗 − 𝑦𝑒𝑖 𝑗 ′

)
, (15)

where 𝑗 ′ is the negative sample sampled item of user 𝑖 .

4.4 Model Optimization and Inference
In summary, our final optimization objective is:

L = E𝑒∈EL𝑒 + 𝛽Var𝑒∈E (L𝑒 ) + 𝜆L𝑎𝑙𝑖𝑔𝑛 + ∥Φ∥2, (16)

where 𝜆 is a hyperparameter that controls the weight of the align-
ment loss, and Φ includes all model parameters. We optimize the
model parameters in the training stage by :

Φ∗ = argmin
Φ
E(𝑖,x𝑗 )∼P𝑡𝑟𝑎𝑖𝑛L(FΦ (𝑖, x𝑗 );R) . (17)

In the inference stage, MILK can directly apply to new items
with varying degrees of modality missingness. When a new item
𝑗new appears, the multimedia feature X𝑗new is first processed using
mean imputation. Then we can predict the preference score of user
𝑖 to 𝑗new as:

𝑦𝑖 𝑗new = FΦ∗ (u𝑖 ,
1
𝑀

𝑀∑︁
𝑚=1

G𝑚 (x𝑚𝑗new )). (18)

5 EXPERIMENTS
In this section, we conduct extensive experiments on three real-
world datasets, which aim to answer the following questions:

• Q1: How does our model perform compared with state-of-
the-art new item recommendation methods?

• Q2: How does our model improve new item recommendation
performance with missing modalities?

• Q3: How do all modules in our model make positive effects
on the performance?

Table 1: The statistics of datasets.

Dataset Baby Clothing TikTok

Train

# Users 19442 39384 9319
# Items 5640 18427 5368
# Interactions 128963 222759 55126
Density 0.118% 0.031% 0.110%

Val # Users 10342 19801 2380
# Items 705 2303 671

Test # Users 10474 19858 2960
# Items 705 2303 671

5.1 Experimental Settings
5.1.1 Datasets. Datasets Description. We conduct experiments
on three widely used real-world datasets, including (a) Amazon
Baby [12, 20], (b) Amazon Clothing, Shoes, and Jewelry [12, 20],
and (c) TikTok2. To simplify reading, they are called Baby, Clothing,
and TikTok. Baby and Clothing include both visual and textual
modalities. TikTok is collected from the TikTok platform to log the
viewed short videos of users. The multi-modal features are visual,
acoustic, and title textual features of videos. For a fair comparison,
all models use the pretrained multi-modal features as input [31, 40].
The statistics of the pre-processed datasets are listed in Table 1.
New Item Setting. We randomly select 20% items and delete their
historical interactions in the training process to simulate new items.
Among them, we further divide half as validation and the remaining
as test items. These items are entirely unseen in the training set.
Modality Missing Setting. On three datasets, we validate the
effect of our model under two settings. In the first Full Training
Missing Test (FTMT) setting, we assume that the quality of the
training data can be guaranteed. We use the complete multimedia
features for training in the training phase, and randomly select 50%
of the items in the testing phase, assuming that they randomly miss
one modality feature. The missing modality is randomly selected
and filled in using the mean imputation to pre-process (We use a
simple padding way to keep the input data in a consistent format,
and we provide detailed experiments on the imputation method in
section 5.3.2). In the second more realistic setting Missing Training
Missing Test (MTMT), we assume that there are also 30% items in
the training set that randomly miss one modality feature.

5.1.2 Evaluation Metrics. We select two metrics that are widely
used in personalized recommender systems: Recall (Recall@K) and
Normalized Discounted Cumulative Gain (NDCG@K). The higher
these two metrics are, the better the model is performing.

5.1.3 Baselines. To verify the effectiveness of MILK, we select
multiple SOTA models suitable for task scenarios for comparison:

• DUIF [10] is a content-based method. It transforms het-
erogeneous user-content networks into homogeneous low-
dimensional space for unified representation learning.

• MICRO [41] is a hybrid method. It learns item-item relation-
ships for each modality, and it utilizes contrastive learning
for better item-level multimodal fusion.

2http://ai-lab-challenge.bytedance.com/tce/vc/
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• DropoutNet [28] is designed for new item recommendation.
It randomly drops the partial preference representation in
the training stage to simulate the new item scenario.

• MTPR [8] address the new item multimedia recommenda-
tion issue by strategically replacing the preference represen-
tation with the all-zero vector in the training phase.

• Heater [44] is a new item recommendation method that uses
the sum squared error loss to align CF signal and content
representation.

• CLCRec [32] uses contrastive learning to constrain CF signal
and content representation to maximize the mutual informa-
tion between them.

• CCFCRec [43] capitalizes on the co-occurrence collabora-
tive signals in warm training data to alleviate the issue of
blurry collaborative embeddings.

• GAR [3] trains a generator and a recommender adversarially,
generating the new item’s representation which is similar
to the old item’s representation.

• GoRec [2] directly models the distribution of pre-trained
preference representations to generate representations for
new items guided by multimedia features.

We comprehensively selected multiple content-based recommenda-
tion methods and multimedia new-item recommendation methods
as baselines. Note that some graph-based multimedia recommen-
dation methods (e.g., MMGCN) are not compared because they
require graph construction based on user-item interaction records,
which makes it difficult be apply in our challenging scenario.

5.1.4 Hyper-Parameter Settings. We implement our MILK and all
baselines with Pytorch framework3. The dimension of preference
representation is fixed as 64. The batch size is set to 2048. During
training, we employ Adam [14] as the optimizer and set the learning
rate at 0.001, the early stop strategy is employed to avoid over-
fitting. We carefully search the best parameter of 𝛽 and 𝜆 and find
MILK achieves the best performance when 𝛽 = 1000 and 𝜆 = 0.05
on Baby, 𝛽 = 50 and 𝜆 = 0.05 on Clothing, and 𝛽 = 50 and 𝜆 = 0.5
on TikTok dataset. For the choice of the Dirichlet distribution when
constructing the environment, we set 𝛼1 = . . . = 𝛼𝑀 and search 𝛼𝑚
from [0.01, 0.1, 1, 10, 100]. For all baselines, we search the parameters
carefully for fair comparisons. We repeat all experiments 5 times
and report the average results.

5.2 Overall Comparisons (Q1)
As shown in Table 2, we compare our model with other baselines
on three datasets. We have the following observations:

(1) On all three datasets, MILK shows a significant improvement
over all baselines in the FTMT setting. Specifically, MILK improves
the strongest baseline𝑤.𝑟 .𝑡 NDCG@20 by 11.2%, 14.0%, and 2.8%
on Baby, Clothing, and TikTok dataset, respectively. Extensive em-
pirical studies verify the effectiveness of the proposed MILK . We
attribute this improvement to the two modules we designed, which
greatly enhanced the generalization ability of the model.

(2) In the MTMT setting, we consider scenarios that are more
realistic. The lack of partial item modality in the training phase
puts forward higher requirements for the fitting and generalization

3https://pytorch.org/

ability of the model. MILK still performs best on all three datasets.
MILK improves the strongest baseline𝑤.𝑟 .𝑡 NDCG@20 by 13.5%,
9.6%, and 4.3% on Baby, Clothing, and TikTok dataset, respectively.
The experimental results further validate the practicability ofMILK.

(3) DUIF, MICRO, and MILK only model the characteristics of
new items through multi-modal features, without introducing ad-
ditional CF representation. Our model performs well on all set-
tings and datasets, which fully demonstrates that our design is
working. For instance, on Baby dataset MILK improves DUIF𝑤.𝑟 .𝑡

NDCG@20 by 69.9%, 87.2%, in FTMT setting and MTMT setting.

5.3 Improvements on Modality Missingness (Q2)
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Figure 3: Performance on different missing scenarios.

5.3.1 Performance on Different Missing Scenarios. In this section,
we further explore how MILK improves performance when the
modalities are missing. The Tiktok dataset has richer modalities,
based on which we construct different modality missing scenarios.
We use the full training and validation sets. In the test set, 10% items
are missing no modality, 45% are randomly missing one modality
and 45% are randomly missing two modalities. We report the per-
formance of the model on all samples and on a specific group of
items separately. We select the top 2 baselines on the Tiktok dataset
in Section 5.2 for comparison. The bar charts in Figure 3 show
the results of the three models under different groups. Overall rep-
resents the results on all test sets, full represents the results on
the item group with complete modality, missing one and missing
two represent the item group with one and to modality missing,
respectively. For ease of presentation, we show the numbers after
two decimal places of NDCG@20. The line chart demonstrates the
percentage of our method improving the strongest baseline. We
can observe that the models outperform baselines on the whole
test set. At the same time, we find that the improvement of the
MILK is more obvious in the item group with missing modalities,
and the improvement of the group with missing two modalities is
far more than the rest of the groups. This shows that our model
really improves the recommendation performance of the model on
modal missing items, and has stronger generalization ability.

5.3.2 Comparison with common data imputation methods. We fur-
ther designed experiments to verify the effects of different data
imputation operations in the inference stage. We conduct experi-
ments on Baby and Clothing datasets in the FTMT setting and report
the result in Table 3. Zero means that we delete the alignment part,
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Table 2: Performance comparisons with different Top-K values different settings.

Settings Full Training Missing Test (FTMT) Missing Training Missing Test (MTMT)
Datasets Baby Clothing Tiktok Baby Clothing Tiktok

Metric Models K=10 K=20 K=10 K=20 K=10 K=20 K=10 K=20 K=10 K=20 K=10 K=20

Recall@K

DUIF 0.0217 0.0381 0.0189 0.0318 0.1814 0.1921 0.0172 0.0308 0.0188 0.0323 0.1706 0.1804
DropoutNet 0.0178 0.0208 0.0155 0.0269 0.1221 0.1276 0.0130 0.0227 0.0150 0.0254 0.1011 0.1169

MTPR 0.0261 0.0328 0.0224 0.0371 0.1526 0.1615 0.0187 0.0325 0.0190 0.0317 0.1444 0.1661
Heater 0.0303 0.0492 0.0338 0.0522 0.1260 0.1327 0.0259 0.0438 0.0308 0.0515 0.1148 0.1349
CLCRec 0.0247 0.0418 0.0281 0.0453 0.1529 0.1584 0.0190 0.0328 0.0265 0.0403 0.1228 0.1459
CCFCRec 0.0295 0.0464 0.0355 0.0545 0.1802 0.1920 0.0210 0.0355 0.0291 0.0453 0.1715 0.1809
GAR 0.0307 0.0485 0.0352 0.0555 0.1486 0.1691 0.0271 0.0449 0.0319 0.0523 0.1292 0.1512
GoRec 0.0335 0.0544 0.0429 0.0639 0.1465 0.1605 0.0282 0.0473 0.0430 0.0634 0.1416 0.1582
Ours 0.0381 0.0628 0.0484 0.0716 0.1886 0.2002 0.0328 0.0517 0.0470 0.0684 0.1793 0.1884

NDCG@K

DUIF 0.0117 0.0163 0.0100 0.0137 0.1792 0.1803 0.0088 0.0125 0.0104 0.0140 0.1682 0.1706
DropoutNet 0.0057 0.0071 0.0093 0.0123 0.0979 0.0956 0.0071 0.0098 0.0077 0.0100 0.0824 0.0860

MTPR 0.0156 0.0208 0.0125 0.0165 0.1271 0.1211 0.0100 0.0139 0.0106 0.0140 0.1177 0.1229
Heater 0.0178 0.0222 0.0186 0.0237 0.1082 0.1016 0.0136 0.0185 0.0166 0.0223 0.0937 0.0975
CLCRec 0.0133 0.0181 0.0163 0.0210 0.1321 0.1249 0.0105 0.0143 0.0148 0.0185 0.1036 0.1080
CCFCRec 0.0159 0.0209 0.0207 0.0259 0.1799 0.1802 0.0114 0.0154 0.0163 0.0207 0.1567 0.1596
GAR 0.0163 0.0210 0.0200 0.0255 0.1133 0.1173 0.0147 0.0196 0.0176 0.0232 0.0956 0.1004
GoRec 0.0179 0.0249 0.0234 0.0292 0.1096 0.1124 0.0153 0.0206 0.0234 0.0300 0.0952 0.0988
Ours 0.0215 0.0277 0.0279 0.0343 0.1830 0.1852 0.0182 0.0234 0.0270 0.0329 0.1774 0.1779

Table 3: Comparisonwith common data imputationmethods.

Datasets Baby Clothing
Metrics Recall@20 NDCG@20 Recall@20 NDCG@20
Zero 0.0501 0.0215 0.0670 0.0322
Mean 0.0525 0.0228 0.0665 0.0320
Map 0.0507 0.0220 0.0619 0.0294

CMAM 0.0585 0.0255 0.0682 0.0330
CEIM 0.0609 0.0264 0.0686 0.0335
Ours 0.0628 0.0277 0.0716 0.0343

heterogeneous environment construction and invariant learning
part in MILK, and fill the missing modalities in the test set with
zeros. Mean indicates padding with the mean value. Map indicates
we pre-train the mapping function between the two modalities.
In the testing phase, for the missing image modality, we use the
text_to_image mapping function to calculate image representation
from the text representation. The missing text representation is
computed from the image representation using the image_to_text
mapping function. CMAM and CEIM indicate that we used only
one module from MILK. The experimental results show that the
preprocessing method does not improve the model performance
in our problem scenario. Sometimes a well-designed imputation
method can further degrade the performance of the model, such as
the Mean and Map imputation on the Clothing dataset. In contrast,
each component of MILK can effectively improve the performance
of the model in the absence of modalities.

5.3.3 Impact of Constructed Environment. MILK constructs dif-
ferentiated environments by adjusting modal weights and learns
preference prediction mechanisms that are invariant across envi-
ronments. We further explore the impact of different environmenta
construction strategies. w/o e=0 does not additionally consider the

Table 4: Different strategies for constructing environments.

Dataset Baby Clothing
Metric Recall@20 NDCG@20 Recall@20 NDCG@20
ours 0.0628 0.0277 0.0716 0.0343

w/o e=0 0.0433 0.0179 0.0685 0.0333
w/o cs 0.0487 0.0205 0.0656 0.0319

w/o random 0.0555 0.0237 0.0643 0.0314

case with the same weights. w/o cs indicates that no cyclic shift
is used to generate the weights, and weights are sampled from
the Dirichlet distribution for each environment while keeping the
number of environments. w/o random means that weights are sam-
pled and cyclically shifted to construct the environment only at the
beginning of model training, and weights are fixed afterward. Table
4 shows that our method outperforms the three variants of the
constructive environment method. Our strategy for constructing
the environment is reasonable, necessary and effective.

5.4 Detailed Model Analysis (Q3)
5.4.1 Ablation Study. To exploit the effectiveness of each compo-
nent of the proposed MILK , we conduct the ablation study on
different datasets. As shown in Figure 4, we compare MILK and
corresponding variants on Top-20 recommendation performance.
MILK-w/o CMAM denotes that the Cross-Modality alignment mod-
ule is removed and the fusion is performed directly after extracting
the modal representation. MILK-w/o CEIM refers to training un-
der the ERM paradigm. In this setting, we directly use the average
strategy to fuse the representations of multiple modalities, and
then calculate the propensity score with the user’s representation
to optimize the objective by BPR. MILK-w/o BOTH means that we
delete both modules at the same time. Under this setting, we did not
perform any design for distribution inconsistency. In Figure 4, we
observed that each component of the MILK contributed to the final
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Figure 4: Ablation experiments on Baby and Clothing datasets.
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Figure 5: Effect of differentmodules on the robustness of themodel.

superior performance. The boost of either module for MILK-w/o
BOTH is huge. For example, in the FTMT setting, CMAM and CEIM
improve MILK-w/o BOTH 𝑤.𝑟 .𝑡 NDCG@20 by 19.4%, and 24.27%
on the Baby dataset, respectively.

Besides, we focus more on the generalization ability of the model
in missing modality scenarios. As shown in Figure 5, we report the
impact of different modules on the model in the full scenario (Full
modality Training, Full modality Test (FTFT)) and missing modality
scenario (FTMT). The bar charts represent the performance of the
model variants under different scenarios. We can clearly see that
the performance of the model drops significantly in the missing
modality scenario. The line chart visually shows the magnitude
of performance degradation for different model variants in the
two Settings. The addition of the two modules reduces the loss
of the model in missing modality scenarios. Specifically, on the
Baby data, when no modules are added, the performance loss is
37.15%. After adding CEIM, the performance loss is 27.68%; The
performance loss after adding CMAM is 32.06%. When the two
modules cooperate, the performance loss is reduced to 24.59%. This
shows that our model not only improves the performance of the
model but also alleviates the performance degradation and enhances
the generalization ability of the model.

5.4.2 Hyper-Parameter Sensitivities.
Effect of Dirichlet Distribution Parameters 𝛼 . As illustrated in
Figure 6(a) and (b), we sample weights from 4 different Dirichlet
distributions and observe the performance of the model. Simply
put, the smaller 𝛼 is, the larger the weight gap is likely to be. In
the FTMT setting, the model achieves the best results on the Baby
and Clothing datasets with 𝛼 = 0.01 and 𝛼 = 0.1, respectively. On
both datasets, the optimal value is achieved when 𝛼 is small, which
is due to the fact that one of the weights generated by Dirichlet
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Figure 6: Performance of different hyperparameters.

distribution at this time will be around 1, which guarantees that
the heterogeneous environment is dominated by a certain modality.
Small 𝛼 value helps MILK to ensure that the modal composition in
different environments is sufficiently different.
Effect of Cross-Modality Alignment Loss Weights 𝛽 . As illus-
trated in Figure 6(c) and (d), we carefully tune the Cross-Modality
alignment loss weights 𝛽 on the Baby and Clothing datasets. We
observe thatMILK achieves the best performance when 𝛽 = 0.05 on
both datasets. When the weight is too small, the goal of capturing
the information of other modalities cannot be achieved. When the
weight is too large, the information of the modality itself may be
seriously offset, resulting in performance degradation.
Effect of Cross-Environment Invariant Loss Weights 𝜆. As
illustrated in Figure 6(e) and Figure 6(f), we carefully tune the cross-
environment consistency loss weights 𝜆 on the Baby and Clothing
datasets. MILK achieves the best performance when 𝜆 = 1000 on
both the Baby and 𝜆 = 50 on the Clothing datasets. The hyperpa-
rameter 𝜆 has a direct impact on the model. Too small 𝜆 results in
cross-environment invariants where the invariant constraint is not
sufficient to achieve our goal. Too large 𝜆 will cause the model to
focus too much on consistency and not enough on learning the
recommendation task itself. In the implementation process, it needs
to be carefully tuned to find the optimum.

6 CONCLUSION
In this paper, we focused on the problem of new item recommenda-
tions in the missing modality scenario. We pointed out that existing
works have too ideal assumptions about the data and are difficult
to handle in real-world complex situations. We proposed MILK to
solve the problem, encouraging the model to guarantee its perfor-
mance as much as possible when the modality quality changes.
Specifically, we designed the cross-modal alignment module so
that the single modal representation can capture the signals of
other modalities. Then we proposed a novel cyclic mixup method
to construct multiple heterogeneous environments. Based on these
environments, we optimized our model using invariant learning,
encouraging it to learn the users’ inherent content preferences
that are kept invariant to arbitrary modality missing. Extensive
experiments verify the effectiveness of MILK.
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